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Abstract. A detailed theoretical analysis of the spatiotemporal mode of a single photon prepared via
conditional measurements on a photon pair generated in the process of parametric down-conversion is
presented. The maximum efficiency of coupling the photon into a transform-limited classical optical mode is
calculated and ways for its optimization are determined. An experimentally feasible technique of generating
the optimally matching classical mode is proposed. The theory is applied to a recent experiment on pulsed
homodyne tomography of the single-photon Fock state [A.I. Lvovsky et al., Phys. Rev. Lett. 87, 050402
(2001)].

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 42.50.Ar Photon statistics and coherence
theory – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.)

1 Introduction

Quantum states containing a definite number of energy
quanta (Fock states) play a major role in quantum op-
tics. They constitute the essence of the quantum nature
of light and are indispensable in the theoretical descrip-
tion of a wide range of optical phenomena. Fock states are
also important in more applied aspects of quantum optics,
such as the rapidly developing fields of quantum commu-
nication and information. In particular, the application of
Fock states in quantum cryptography which would result
in a significant increase in capacity and security of com-
munication channels [1]. Superpositions of the vacuum and
the single-photon state in a certain optical mode can also
be used to implement a qubit. Such an application of the
Fock state has been discussed in a recent proposal on ef-
ficient linear quantum computation [2].

Despite their importance, pure number states are ex-
tremely rare in nature and their synthesis in a laboratory
constitutes a rather involved task. In recent years signif-
icant efforts have been made towards developing a “pho-
ton pistol” — a technology of emitting a single photon
into a well-defined traveling spatiotemporal mode upon
the onset of a classical trigger. Several approaches are be-
ing tried [3], but so far there are no experimental imple-
mentations that would resolve this task fully. In these cir-
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Fig. 1. Preparation of single photons by conditional measure-
ments on a biphoton state.

cumstances an alternative for a number of applications is
offered by the technique of preparing single photons by
conditional measurements on a biphoton state born in the
process of parametric down-conversion (PDC) (Fig. 1). In
PDC, a “pump” photon propagating through a nonlin-
ear medium may spontaneously annihilate to produce two
photons of lower energy in the form of a highly entan-
gled quantum state known as biphoton. The two gener-
ated photons are separated into two emission channels ac-
cording to their propagation direction, wavelength and/or
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polarization. Detection of a photon in one of the
emission channels (labeled trigger) causes the non-
local photon pair to collapse projecting the quan-
tum state in the remaining (signal) channel into
a single-photon state. Proposed and tested experi-
mentally in 1986 by Hong and Mandel [4] as well
as Grangier, Roger and Aspect [5], this technique
has become a workhorse for many quantum optics
experiments [6].

Using the conditionally prepared photon (CPP) for
practical purposes, such as communication, storage, quan-
tum information processing or synthesis of more complex
quantum states, requires the photon to be produced in a
well-defined, transform-limited optical mode. While there
exists extensive theoretical and experimental research on
biphotons and associated quantum effects [7–10], very lit-
tle work has been done to analyze the CPP as a “final
product”, i.e. in a way that would reveal its quantum state
and provide ways for its optimization.

In 1997 Ou presented a qualitative theoretical investi-
gation of the temporal mode of the CPP in application to
homodyne tomography [11]. He has shown that in order to
prepare the photon in a transform limited temporal mode
that could be matched to the local oscillator beam, one
has to use a spectral filter in the trigger channel which is
much narrower than the linewidth of the pump pulse. In
a more recent paper, Grosshans and Grangier considered
a similar experiment and quantified the fidelity of mode
matching in terms of the efficiency of the tomography mea-
surement [12]. This efficiency was calculated using specific
assumptions about the local oscillator mode and a simpli-
fied model of the spectral filter has been used. Very re-
cently, the Fock state tomography has been demonstrated
experimentally [13], but no theoretical discussion regard-
ing the above matters has been presented.

In this paper we perform a detailed theoretical anal-
ysis of the spatiotemporal mode of the CPP using very
general assumptions about the spatial and spectral filter
in the trigger channel. We calculate the distribution of the
CPP state over plane wave modes and discuss ways of its
optimal mode matching to a transform-limited classical
wave. We determine the theoretical limits imposed on the
mode matching parameter and propose a method of con-
structing a classical field that would match the CPP mode
optimally.

2 The conditionally prepared single photon

We start with a general calculation of the quantum state of
a single photon state prepared by a conditional measure-
ment on a pulsed PDC biphoton state. We restrict our con-
sideration to the pulsed regime. A continuous-wave pump,
although highly efficient in generating biphotons [14], does
not yield transform-limited CPPs as we demonstrate be-
low. In all calculations in this paper, we neglect polar-
ization entanglement (polarization is assumed to be well-
defined in both PDC channels) and refraction inside the
crystal.

The interaction Hamiltonian of parametric down-
conversion is given by [15]

V̂ (t) = α

∫
K̃(r) ˆ̃E

(−)

t (r, t) ˆ̃E
(−)

s (r, t)Ẽ(+)
p (r, t)d3r + H.c.,

(1)

where α is proportional to the second order nonlinear sus-
ceptibility and is assumed frequency independent, K̃(r)
describes the nonlinear crystal volume and is one inside
and zero outside the crystal. We treat the fields in the
signal (s) and trigger (t) channels as quantum operators,
with their positive-frequency components given by

ˆ̃E
(+)

s,t (r, t) =
∫

e−i(ks,t·r−ωs,tt)âks,t,ωs,td
3ks,t dωs,t; (2)

the coherent pump field is treated classically:

Ẽ(+)
p (r, t) =

∫
E(+)

p (kp, ωp)ei(kp·r−ωpt)d3kpdωp. (3)

For all fields, quantum or classical, the Hermitian elec-
tric field observable is written as Ẽp(r, t) = Ẽ

(+)
p (r, t) +

Ẽ
(−)
p (r, t), with Ẽ

(−)
p (r, t) = (Ẽ(+)

p (r, t))†.
Assuming the signal and trigger modes to be initially

in the vacuum state and restricting the consideration to
the first order perturbation theory, we write the resulting
biphoton state as

|B〉 = |0〉s|0〉t − i
∫ ∞
−∞

V̂ (t) dt. (4)

Performing the integration we obtain:

|B〉 = |0〉s|0〉t − i
∫

d3ks dωs d3kt dωt

× Ψ(ks, ωs,kt, ωt)|1ks,ωs〉s|1kt,ωt〉t, (5)

with

Ψ(ks, ωs,kt, ωt) = α

∫
E(+)

p (kp, ωs + ωt)K(∆k)d3kp.

(6)

Here K(k) is the Fourier transform of K̃(r) and the
k-vector mismatch is ∆k = kp − ks − kt.

The trigger photon is then selected by spatial and fre-
quency filters and is detected by a single-photon counter.
Conditioned on the detection event the non-local bipho-
ton state collapses into a single photon state in the signal
mode. The properties of this mode are determined by the
optical mode of the pump photon and the spatial and
spectral filtering in the trigger channel:

ρ̂s = Trt(ρ̂t|B〉〈B|), (7)

where the trace is taken over the trigger states and ρ̂t

denotes the state ensemble selected by the filters:

ρ̂t =
∫
T (kt, ωt)|1kt,ωt〉t〈1kt,ωt |t d3kt dωt (8)



T. Aichele et al.: Optical mode characterization of single photons 239

with T (k, ω) being the spatiotemporal transmission func-
tion of the filters.

The expression (8) is different from the one used by
Grosshans and Grangier [12] who associated a monochro-
mator of width δω with a pure state of the form
|ψt〉 =

∫ ω0+δω/2

ω0−δω/2 |1ω〉dω. A spectral filter does not distin-
guish relative phases of different frequency components of
the transmitted ensemble; therefore in our treatment we
assume all non-diagonal elements of the trigger density
matrix to vanish.

An explicit calculation of the quantum state (7) of the
photon in the signal channel yields

ρ̂s =
∫

d3ksdωsd3k′sdω
′
s

× Φ(ks, ωs,k′s, ω
′
s)
∣∣1k′s,ω

′
s

〉
s
〈1ks,ωs |s, (9)

where

Φ(ks, ωs,k′s, ω
′
s) = |α|2

∫
d3kt dωt d3kp d3k′p

×E(−)
p (kp, ωs + ωt)E(+)

p (k′p, ω
′
s + ωt)

× T (kt, ωt)K∗(∆k)K(∆k′), (10)

with ∆k as above and ∆k′ = k′p − k′s − kt.

3 The measure of mode matching

To discuss the main question of this paper — how to
match a classical wave to the spatiotemporal mode of the
CPP — we first need to introduce a quantitative mea-
sure of mode matching. We characterize both modes by
their correlation functions, defined as Γ (k, ω,k′, ω′) =
〈Ê(−)(k, ω)Ê(+)(k′, ω′)〉, with the averaging done in the
statistical sense for the classical field and in the quantum-
mechanical sense for the single-photon field. For the lat-
ter, using Ê(+)(k, ω) ∝ âk,ω and applying equation (9),
we find:

Γ (k, ω,k′, ω′) = Tr
(
ρ̂s â
†
k,ω âk′,ω′

)
= Φ(k, ω,k′, ω′),

(11)

i.e. the field correlation function coincides with the density
matrix of the single photon state.

It is natural to define the degree of mode matching be-
tween two waves characterized by their correlation func-
tions Γ1,2(k, ω,k′, ω′) as follows:

M =
∫

d3k dω d3k′ dω′ Γ1(k, ω,k′, ω′)Γ ∗2 (k, ω,k′, ω′)∫
d3k dω Γ1(k, ω,k, ω)

∫
d3k dω Γ2(k, ω,k, ω)

·

(12)

If both waves Γ1 and Γ2 are classical, the mode matching
parameter is equal to the square of the visibility of the
pattern that would be observed if the modes are caused
to interfere with each other. If both waves are single pho-
tons, the value of M is the quantum overlap Tr(ρ̂1ρ̂2) be-
tween the two states. We are most interested in the third

case, when one of the Γ ’s represents a CPP, and the other
a matching classical wave, and adopt the above expres-
sion as the measure of mode matching. Grosshans and
Grangier [12] have shown that the expression (12) deter-
mines the quantum efficiency in a homodyne tomography
measurement of the single-photon Fock state in which the
matching classical wave serves as a local oscillator.

Suppose that a single photon is prepared in a certain
state ρ̂s and our task is to pick the classical wave that
would match the mode of the single photon optimally.
As the former is generally not a pure quantum state, no
choice of the classical mode can guarantee perfect mode
matching. To determine the maximum level of M that
can be achieved, we introduce the purity parameter of an
optical mode,

P =
∫

d3k dω d3k′ dω′ Γ (k, ω,k′, ω′)Γ ∗(k, ω,k′, ω′)(∫
d3k dω Γ (k, ω,k, ω)

)2 ,

(13)

which is equal to unity for coherent optical modes and
vanishes for incoherent ones. For the single-photon states
the above quantity can be written in the form of a well-
known quantum state purity parameter

P = Tr
(
ρ̂2

s

)
, (14)

which reaches one for pure quantum states and approaches
zero for density matrices with no non-diagonal elements.

It then follows from the Cauchy-Schwartz inequality
that for any two optical modes 1 and 2

M2 ≤ P1 P2. (15)

If mode 1 is a CPP, the right-hand side of the above in-
equality is maximized if the matching classical mode 2 is
a coherent wave, i.e. P2 = 1. In this case,

M ≤
√
P1, (16)

which establishes an unconditional theoretical limit to the
degree to which a classical wave can be matched to a given
single-photon mode (9).

4 Modeling the single photon mode
with a classical wave

Our next task is to design a classical wave that would
match the CPP mode optimally. Apart from its theoreti-
cal aspect, this problem constitutes a substantial challenge
in the experimental practice. The traditional procedure of
matching two classical modes with each other — by ob-
serving interference fringes and optimizing their visibility
— is not applicable to the situation when one of the modes
is a single photon. There is no laser beam to mode match
to. The only information available to the experimental-
ist is the remote location and width of the trigger filter
and the parameters of the pump. Although the spatial lo-
cation of the CPP can be approximately determined by
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Fig. 2. (a) Nonlinear interaction of the alignment beam with
the pump pulse generates DFG emission; (b) interaction of
Klyshko’s advanced wave with the pump generates a DFG
mode that mimics that of the CPP.

detecting coincidences between the photon count events
in the signal and trigger [8], optimizing the mode match-
ing requires adjustment of a much larger set of degrees of
freedom, such as the beam direction, divergence, spatial
and temporal width, optical delay, etc. Reliable adjust-
ment of these parameters cannot be achieved through sole
optimization of the coincidence rate.

Fortunately, the CPP mode can be modeled with a
classical wave generated in the following way. Suppose an
alignment beam is inserted into the trigger channel so that
it overlaps spatially and temporally with the pump beam
inside the crystal and passes through the optical filters
(Fig. 2a). Nonlinear interaction of such an alignment beam
with the pump wave will produce difference frequency gen-
eration (DFG) into a spatiotemporal mode similar to that
of the CPP.

To show this, we write for the nonlinear polarization
inside the crystal

P̃DFG(r, t) ∝ ẼA(r, t)Ẽp(r, t). (17)

Here Ẽp(r, t) and ẼA(r, t) are the electric fields of the
pump and alignment beams, respectively. The nonlinear
polarization gives rise to the DFG field which is obtained
from equation (17) via a Fourier transform which is re-
stricted to the crystal volume:

E
(+)
DFG(ks, ωs) = β δ(ks − ωs/c)

∫
d3kA dωA d3kp

×E(−)
A (kA, ωA)E(+)

p (kp, ωs + ωA)K(∆k). (18)

The proportionality coefficient β represents the nonlinear-
ity of the medium, ∆k = kp − ks − kA. If the alignment
field is partially incoherent and is characterized by a cor-
relation function ΓA(kA, ωA,k′A, ω

′
A), the above equation

generalizes to

ΓDFG(ks, ωs,k′s, ω
′
s) = |β|2 δ(ks − ωs/c) δ(k′s − ω′s/c)

×
∫

d3kA dωA d3k′A dω′A d3kp d3k′p

×E(−)
p (kp, ωs + ωA)E(+)

p (k′p, ω
′
s + ω′A)

× Γ ∗A(kA, ωA,k′A, ω
′
A)K∗(∆k)K(∆k′). (19)

We immediately notice that the expressions for the optical
mode of the CPP photon (10) and of the DFG pulse (19)
are very similar1. This similarity can be interpreted in the
framework of Klyshko’s concept of advanced waves [17].
Suppose the single photon detector is replaced by an inco-
herent source continuously emitting omnidirectional inco-
herent light into a wide spectral range backwards in time.
This completely incoherent light is characterized by the
correlation function Γ0(k′, ω′,k, ω) ∝ δ(3)(k′−k) δ(ω′−ω)
which, upon passing through the spatial and spectral fil-
ters, transforms into

Γt(k′, ω′,k, ω) = T (k, ω) δ(3)(k′ − k) δ(ω′ − ω). (20)

The advanced wave then enters the nonlinear crystal and
interacts with the pump wave whenever and wherever
it is present in the crystal. The nonlinear interaction of
Klyshko’s advanced wave with the pump pulse produces
a pulse of DFG emission into the signal channel (Fig. 2b).
Substituting the correlation function (20) of the advanced
wave into equation (19) as ΓA we find that the correla-
tion function ΓDFG(ks, ωs,k′s, ω

′
s) of the DFG pulse gen-

erated through the nonlinear interaction of the advanced
wave and the pump pulse is identical to the density ma-
trix Φ(ks, ωs,k′s, ω

′
s) of the single photon prepared by condi-

tional measurements on a biphoton performed in the same
optical arrangement.

This identity can be easily generalized to optical fil-
ters of random configuration, more complex than a com-
bination of spatial and spectral filters described by equa-
tions (8, 20). Its applicability is also independent from
other features of the experimental setup, such as the type
of PDC, properties of the pump beam, geometry of the
crystal, walk-off and group velocity dispersion effects, etc.
and appears to be very general. The only restriction that
has to be taken into account is the first order perturbation
theory that implies that the probability of generating two
or more biphotons at a time is negligible.

By varying the configuration of the filter in the trigger
channel one has a degree of freedom in forming the CPP
mode with required spatiotemporal properties. This pos-
sibility can be considered as an example of remote state
preparation in the sense discussed by Bennett et al. [18].
The original biphoton state is highly entangled in the
frequency-momentum space and this entanglement plays
an essential role in generating the Fock state. The signal

1 The delta-functions, included into equation (19) to elim-
inate nonphysical Fourier components of the DFG field, are
also implicitly present in equations (9, 10) as the single-photon
states |1ks,ωs〉s exist only when ks = ωs/c.
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mode does not exist unless and until the trigger photon
passes through the filters and is registered. A detection
event results in a non-local preparation of a single photon
in an optical mode whose characteristics are determined
by the way in which the measurement in the trigger chan-
nel is performed.

5 Mode matching: an explicit calculation

5.1 Frequency-momentum representation

We have thus designed an experimentally plausible way of
generating a classical wave whose mode models that of the
CPP. Although the advanced (i.e. propagating backwards
in time) wave is a purely imaginary object, it can be simu-
lated in a laboratory by a coherent laser beam — the align-
ment wave. As we demonstrate in this section, the proper
choice of the latter allows the level of mode matching to
reach its theoretical limit set by equation (16). To simplify
our calculations, we make the following assumptions.

1. Parametric down-conversion occurs in a collinear
type II configuration. The signal and trigger chan-
nels are then separated according to their polariza-
tion. Collinearity of the pump, signal and trigger fields
allows to use the same reference frame for all three
waves.

2. A simple combination of spatial and spectral filters is
used in the trigger channel, so equations (8, 20) are
valid.

3. The crystal volume is much larger than the spatial
extent of the pump pulse inside the crystal. This allows
us to approximate

K(∆k) ≈ δ(3)(∆k) (21)

and equations (10, 19) simplify accordingly.
4. The pump (p) and alignment (A) fields are collimated

inside the crystal and are assumed to be of Gaussian
shape:

E
(+)
p,A(k, ω) = E0

p,A exp

(
− k2

⊥
κ2

p,A

−
(
ω − ω0

p,A

)2
σ2

p,A

)
,

(22)

where ω0
p,A are the central frequencies of the two waves,

σp,A are their linewidths and κp,A are the beam widths
in the momentum space. A similar assumption is made
for the transmission of the trigger filter:

T (k, ω) = T0 exp

(
−k2
⊥
κ2

t

−
(
ω − ω0

t

)2
σ2

t

)
· (23)

5. The center frequency of the alignment field coincides
with the transmission maximum of the spectral filter,
i.e. ω0

A = ω0
t and its direction is collinear with the

transmission maximum of the spatial filter.
6. There is no beam walkoff nor group velocity dispersion.

(a)
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Fig. 3. (a) Square root of the CPP state purity parameterp
Ptemp(µt) which sets the maximum achievable level of mode

matching for a given optical arrangement; (b) temporal mode
overlap M(µt, µ

max
A ) between the DFG and CPP modes for the

optimally chosen alignment beam; (c) temporal mode overlap
M(µt, 0) for a plane wave alignment beam.

The calculation of the mode matching and the purity
parameter substantially simplifies under these assump-
tions as the temporal variables separate from the two spa-
tial ones. The resulting values of M and P are products of
three similar expressions for the temporal and spatial (in
two orthogonal dimensions) mode matching and mode pu-
rity parameters. In this subsection, we restrict ourselves to
the temporal domain keeping in mind that the calculation
in the spatial domain would be completely analogous.

The density matrix of the CPP mode are determined
using equation (10):

Φ(ω, ω′) = Γ 0
s exp

(
−
(
ω − ω0

s

)2 +
(
ω′ − ω0

s

)2(
σ2

p + 2σ2
t

)
− σ2

t (ω − ω′)2

σ2
p

(
σ2

p + 2σ2
t

)) · (24)

where Γ s
0 is a constant factor and ω0

s = ω0
p − ω0

t . An ap-
plication of equation (13) to the above expression yields
the temporal purity parameter of the CPP mode:

Ptemp(µt) = 1/
√

1 + 2µ2
t , (25)

with µt = σt/σp.
The expression (25) (Fig. 3, curve (a)) confirms the

conclusion of Ou [11]: narrowband filtering in the trig-
ger channel is crucial in obtaining a CPP mode that ap-
proaches a pure state. Only in this case can one achieve
efficient mode matching between the CPP and a classical
mode. In this aspect our approach is very different from
the one taken by Grosshans and Grangier [12]. According
to their model, the ensemble selected by the filter in the
trigger channel is a pure state; as a consequence, one can
always achieve a perfect mode matching fidelity by picking
the proper parameters of the matching classical wave. As
demonstrated above, using the density matrix formalism
to model the state ensemble selected by the trigger leads
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to an intrinsic reduction of the CPP mode purity that
cannot be compensated by adjusting the properties of the
matching classical wave.

This result appears to contrast with some recent re-
ports demonstrating that high-visibility quantum interfer-
ence effects, in particular, the Hong-Ou-Mandel dip [19],
can be observed without any spectral filtering in the down-
conversion channels [9,10]. These effects were however ob-
tained through a quantum measurement on a biphoton
alone. The goal of our treatment, on the other hand, is to
match one of the photons in a pair to an external optical
field. Hence the difference in requirements.

To make the calculation of the purity parameter more
practical we rewrite equation (25) in terms of the exper-
imentally accessible full temporal width at half intensity
maximum (FWHM) of the pump pulse τp = 2

√
2 ln 2/σp

and the spectral FWHM of the spectral filter transmission
function wt = 2

√
ln 2σt. Approximating equation (25) for

µt � 1, we obtain

Ptemp ≈ 1− µ2
t = 1−

w2
t τ

2
p

32(ln 2)2
· (26)

Our next goal is to determine and optimize the fidelity
of mode matching between the DFG and CPP modes.
Substituting the correlation function of the coherent
alignment field ΓA(k, ω,k′, ω′) = E∗A(k, ω)EA(k′, ω′) into
equation (19), we find for the DFG field:

ΓDFG(ω, ω′) = ΓDFG
0 exp

(
−
(
ω − ω0

s

)2 +
(
ω′ − ω0

s

)2(
σ2

p + σ2
A

) )
·

(27)

With this, using equations (11, 12) we obtain the mode
matching factor:

M(µt, µA) =

√
1 + µ2

A

(1 + µ2
A/2 + µ2

t ) (1 + µ2
A/2)

, (28)

where µA = σA/σp. For a given µt, M(µt, µA) reaches

its maximum at µmax
A =

√√
1 + 2µ2

t − 1, which can be
approximated as µA ≈ µt for small values of µt. The DFG
field models the CPP mode optimally when the width of
the alignment pulse in the frequency-momentum space is
equal to that of the transmission function of the filter.

In Figure 3 (curve (b)) we plot M(µt, µ
max
A ) as a func-

tion of µt. We see that the mode matching parameter ap-
proaches its theoretical limit

√
Ptemp at low values of µt;

in fact, the difference does not exceed 0.5% for σt < σp/2.
This shows that the presented technique of modeling the
CPP mode with a classical wave is indeed effective as long
as the filtering in the trigger channel is sufficiently tight.

In the limit of narrowband filtering precise optimiza-
tion of the alignment beam parameters is not crucial as
long as this beam does pass through the filters. Curve (c)
in Figure 3 shows the behavior or M(µt, µA) with µA ≡ 0.
Instead of an alignment pulse of optimal width, simply a
plane wave is used. Although the level of mode overlap
is not as high as for the optimal case, the difference is
negligible for low µt.

5.2 Time-space representation

We can gain some additional insight by calculating the
CPP mode purity parameter in the space-time rep-
resentation rather than the frequency-momentum rep-
resentation used so far. In this subsection we work
with correlation functions defined as Γ̃ (r, t, r′, t′) =
〈Ẽ(−)(r, t) Ẽ(+)(r′, t′)〉, the mode matching and purity pa-
rameters redefined analogously.

We employ the same assumptions as in the previous
subsection but do the calculation for the spatial domain
only. To facilitate visualizing the physics involved, we uti-
lize Klyshko’s advanced wave model and perform the en-
tire calculation classically.

The transverse correlation function of the DFG mode
is obtained from equation (17) and is as follows:

Γ̃s(r, r′) = |β|2Ẽ(−)
p (r)Ẽ(+)

p (r′)Γ̃ ∗t (r, r′), (29)

where r denotes the transverse radius vectors in the crys-
tal plane and Γ̃t(r, r′) is the correlation function of the
advanced wave in the plane of the crystal. In writing this
equation we made use of the fact that the pump pulse is
a coherent wave.

The photon counter behind the spectral filter pinhole is
replaced, according to the Klyshko model, by a source gen-
erating spatially incoherent light backwards in space and
time. The light emitted by the source passes through the
pinhole and is collimated by the focusing lens (Fig. 2b).
The correlation function of the advanced wave in the plane
of the nonlinear crystal is then equal to that in the plane of
the focusing lens. The latter is determined in the far-field
approximation using the van Cittert-Zernike theorem [20]:

Γ̃t(r, r′) =
∫
T (R)e−i(kt/F )R·(r−r′)d3R, (30)

where kt = ω0
t /c is the trigger wavenumber, F is the focal

length of the lens and T (R) is the pinhole transmission
function.

5.2.1 Gaussian filter

For a Gaussian filter (23), replacing k⊥ = ktR/F and
performing a Fourier transform according to equation (30)
we obtain the correlation function of the advanced wave:

Γ̃t(r, r′) = Γ̃ 0
t exp

(
−(κt|r− r′|/2)2

)
. (31)

Substituting it into equation (29) and writing for the
pump field (22) Ẽ(+)

p (r) ∝ exp(−(κp|r|/2)2), we deter-
mine the spatial correlation function of the signal mode
and its purity parameter:

Psp =
∫

d3r d3r′ Γ̃s(r, r′)Γ̃ ∗s (r, r′)(∫
d3r Γ̃s(r, r)

)2

=
1

1 + 2κ2
t/κ

2
p

· (32)
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This expression is clearly analogous to equation (25).
The absence of a square root is explained by the two-
dimensional character of spatial mode matching.

The light emitted by Klyshko’s virtual source is com-
pletely incoherent. However, as the advanced wave passes
through a narrow aperture, it gains some degree of trans-
verse coherence according to the van Cittert-Zernike theo-
rem. Because the nonlinear interaction is restricted to the
area where the pump field is present, the resulting signal
(DFG) field is also partially coherent provided the pump
beam diameter is smaller than the transverse coherence
length of the advanced wave. This explains why the ad-
vanced wave, in spite of its own incoherence, may generate
a highly coherent CPP signal.

5.2.2 Cylindrical filter

To make the above calculation more useful for practi-
cal applications, consider a spatial filter not of Gaussian
shape, but of top-hat shape, i.e. the pinhole transmits
all the light within its radius ρ. In this case, the correla-
tion function of the advanced wave, calculated using equa-
tion (30), is given by

Γt(r, r′) =
2J1(ktρ|r− r′|/F )

(ktρ|r− r′|/F )
, (33)

where J1(x) is the first order Bessel function. Approx-
imating 2J1(x)/x ≈ 1 − x2/8 for small x and compar-
ing the correlation functions (31) and (33) we find the
two functions to behave similarly on small spatial scales
if κt = ktρ/(F

√
2). Substituting the latter identity into

equation (32) and expressing κp through the FWHM di-
ameter dp of the pump beam (κp = 2

√
2 ln 2/dp) we find

in the limit of tight filtering

Psp ≈ 1−
(

πρdp√
2 ln 2λtF

)2

, (34)

where λt is trigger wavelength. Equations (26, 34) pro-
vide the means for evaluating the CPP mode purity factor
from a set of parameters that are readily measurable in
an experiment.

6 Experimental considerations

As we have shown in the previous section, tight filtering
in the trigger channel, both spatial and temporal, is the
key to obtaining a CPP ensemble which approaches a pure
state and can be coupled into a classical optical mode. In
experimental practice, reducing the width of spatial and
spectral filters lowers the trigger count rate and increases
the relative fraction of dark counts. As seen from equa-
tion (26), a reasonable compromise (dependent on a par-
ticular application) is a spectral filter FWHM on the order
of the inverse duration of the pump pulse. A favorable size
for the pinhole in the spatial filter is obtained from equa-
tion (34) and should be such that the imaginary coherent

pulsed
laser

doubler
down

converter

trigger
beam

signal
beam

spatial +
spectral filter

trigger
detector

homodyne
detector

Fig. 4. Scheme of the experiment on quantum tomography of
single-photon states [13].

wave propagating backwards through the pinhole would
create a diffraction spot in the optical plane of the crys-
tal which is several times larger than the diameter of the
pump beam.

An important experimental limitation is imposed by
the existing technology of manufacturing optical coatings.
Interference bandpass filters narrower than 1 Å are not
available or very expensive. Ultrashort (less than a few
picoseconds) laser pulses must therefore be used to pump
the downconverter so that the trigger filter bandwidth can
be made sufficiently narrow in comparison with the pump
linewidth.

The freedom of choice of the optimally matching clas-
sical pulse is also limited. While its spatial parameters
can be varied in a wide range, its temporal width is set
by the source laser and cannot be changed easily. Using
laser pulses of non-optimal width results in a reduction
of the temporal mode matching efficiency. If the width of
the matching Gaussian pulse differs from that of the CPP
mode by a factor of α, the mode matching is reduced by
a factor of

f(α) =
2α

α2 + 1
· (35)

As a practical example of solving the mode matching prob-
lem we consider the experiment of Lvovsky et al. [13] on
homodyne tomography of the single-photon Fock state
(Fig. 4). In this experiment, λ = 790 nm,

√
2τp = 1.6 ps2

master laser pulses were frequency doubled and then
down-converted in a type-I frequency degenerate configu-
ration. Such a scheme permitted to use a fraction of the
original laser radiation as the local oscillator for the bal-
anced homodyne detector. The photons emitted into the
trigger channel were filtered by a combination of a 0.4-nm
(wt = 1.2×1012 s−1) FWHM interference filter and a spa-
tial filter consisting of a F = 80 mm focal length lens and
a 2ρ = 50 µm pinhole. The FWHM diameter of the pump
beam was dp = 0.34 mm. The laser frequency was cen-
tered at the transmission peak of the spectral filter which
ensured the coincidence of the center frequencies of the
CPP and the local oscillator (LO).

2 A factor of
√

2 is due to frequency doubling.
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In order to perform an efficient homodyne measure-
ment it was necessary to achieve good mode overlap be-
tween the local oscillator and the CPP. Since at the time
of the measurement no alignment beam could have been
present in the trigger channel, the procedure of preparing
the matching classical mode described in Section 4 was ap-
plied in two steps. In the first step, a fraction of the master
laser field was inserted into the trigger channel and syn-
chronized with the pump pulses. This field generated DFG
emission through its nonlinear interaction with the pump
and thus fulfilled the function of the alignment beam. Its
spatial characteristics were optimized according to the re-
quirements established in Section 5: the alignment beam
was made broad and collimated so it passed well through
the spatial filter. The LO beam was overlapped with the
DFG beam on a 50% beamsplitter and interference be-
tween the two classical fields was observed in one of the
beamsplitter output ports. The visibility of the interfer-
ence pattern was maximized by varying the spatial param-
eters of the LO beam with a 3-lens telescope and steer-
ing mirrors. In the second step, the alignment beam was
blocked and a tomography measurement was performed
using the same beamsplitter for balanced homodyning.

The task of evaluating the factor of mode matching
between the LO and CPP modes thus splits into two
parts. First, the purity parameter P of the CPP mode
needs to be evaluated theoretically to establish the upper
limit for the mode matching between the CPP and DFG
waves. Second, the level of mode matching Mcl between
the classical DFG and LO waves has to be determined
experimentally from the visibility of the interference pat-
tern. The overlap between the CPP and LO modes can
then be evaluated as a product M = Mcl

√
P .

Although the down-conversion occurred in a non-
collinear configuration, the angle between the down-
conversion channels and the pump beam was relatively
small (6.8◦) so the approximations outlined in the begin-
ning of Section 5 were applicable to the system. The sig-
nal beam walk-off was eliminated by using the “hot spot”
configuration of the down-converter [21] and the group
velocity dispersion effects were negligible [22]. Applying
equations (26, 34) to the actual experimental parameters
we find the values of Ptemp = 0.85 and Psp = 0.87 for the
temporal and spatial purity parameters of the CPP mode,
respectively. This corresponds to a cumulative purity fac-
tor of P = PtempPsp = 0.74.

The maximum visibility of the interference fringes
observed between the DFG and LO waves was equal
to 0.83 which corresponds to a mode matching factor
Mexp = 0.69. In order to obtain Mcl, this value needs
to be corrected to accommodate for the temporal prop-
erties of the alignment pulse. The alignment field was
not narrowband (as required), which resulted in a dif-
ferent linewidth of the DFG field as compared to the
CPP mode. The nonlinear interaction between the sec-
ond harmonic (pump) and the fundamental (alignment)
waves produces a DFG wave whose linewidth is by a
factor

√
3 broader than the fundamental. On the other

hand, the spectral linewidth of the CPP mode in the

limit of narrow filtering would mimic that of the pump,
which is

√
2 times the fundamental [12]. If a narrowband

alignment beam were available, the mode overlap between
the LO and DFG waves would have been by a factor of
f(
√

2)/f(
√

3) = 1.09 higher than the one actually ob-
served. We find Mcl = Mexpf(

√
2)/f(

√
3) = 0.75.

We calculate the overall factor of spatiotemporal mode
matching between the LO and CPP waves as M =√
PMcl = 0.65. This number is in agreement with the

value of 0.69× 0.95 quoted in reference [13].

7 Conclusion

We have investigated the spatiotemporal optical mode of
the single-photon Fock state prepared by conditional mea-
surements on a biphoton born in the process of parametric
down-conversion and the possibilities of matching it with
a classical wave. Our theory, developed using the density-
matrix formalism, shows that in order to obtain a pure
single-photon state in the signal channel it is essential
to provide narrow spatiotemporal filtering in the trigger
channel. Only in this case can efficient mode matching be
achieved. The theoretical limit of mode matching can be
expressed in terms of the CPP mode purity factor which
is readily determined as a function of the experimental
parameters.

We have shown that the optical mode of the CPP is
identical to that of a classical wave generated due to a
nonlinear interaction of the pump wave and Klyshko’s ad-
vanced wave. Based on this knowledge we proposed and
implemented an experimental method of modeling the
CPP mode by using a narrowband alignment beam in
place of the advanced wave. The difference frequency field
generated in such an arrangement matches the CPP mo-
de with an efficiency that approaches the theoretical
limit.

Finally, we have discussed how the mode matching ef-
ficiency can be evaluated and optimized in a practical ex-
perimental setting.
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